
High Performance RSA 512 bit IPCore

High Performance

IPCore

RSA 512 bit

Data-sheet v.1.0

Emilio Castillo Villar
Javier Castillo Villar

1

High Performance RSA 512 bit IPCore

Content Index
1. Introduction:...3
2. Core Interface:..3
3. On constants and input format:...5

3.1 Data format:...5
3.2 Calculating constants:..5

4. Required Memory Cores:...6
4.1 Mem_b:..6
4.2 res_out_fifo:...7
4.3 Fifo_512_bram:...8
4.4 Fifo_256_feedback:...9

2

High Performance RSA 512 bit IPCore

1. Introduction:

Here, we present the first available open-source 512 bit RSA core. This is a reduced version
of a full FIPS Certified 512-4096 capable RSA Crypto-core.

The full version supports all key sizes (512, 1024, 2048, 4096) and includes a complete
testbench. It can reach more than 150 operations per second with a 1024 key size in a Spartan 6
FPGA and more than 200 in a Virtex 6.

The core fits in a XC6SLX25T, which makes it a nice solution for mobile devices needing RSA
acceleration.

For more information about this core contact jcastillo@opencores.org

3

mailto:jcastillo@opencores.org

High Performance RSA 512 bit IPCore

2. Core Interface:

The core performs a classical modular exponentiation x ymod m the data needed is the
following:

1.bit_size : this is a constant value which specifies the bit length of value y, it is necessary in order to
perform private-key exponentiation (The usual value of this field will be “512”) or public-key
exponentiation (It can vary between a few bits). It can be calculated as log2 y being y the key used
to cipher.

2.X: This is the plain text input which will be ciphered, in section 3 we will detail the data format.

4

High Performance RSA 512 bit IPCore

3.Y: This is the key input, which will be used to cipher X, in section 3 we will detail the data format.

4.M: This is the module m input , in section 3 we will detail the data format.

5.n_c : this input is a 32 bit constant needed by the ciphering algorithm in order to achieve a high
performance, it can be obtained as we detail in section 3.

6.r_c: this is a 512 bit length constant needed by the ciphering algorithm in order to achieve a high
performance, it can be obtained as we detail in section 3.

7.valid_in: should be active high (logical value of 1 as long as the data is being introduced.

8.S: This port is the data output of the exponentiation.

9.valid_out: as it's name says, it indicates when the values on S are valid.

Also don't forget to read section 4 where we explain how to generate the needed memory
cores.

3. On constants and input format:

3.1 Data format:

The values X, Y, M and r_c needed to be coded as it follows.

Given a 512 bit number X= a31a30a29.....a2a1a0 with ai being a 16 bit length word

It shall be introduced in the core starting by the least significant 16 bit word.

This means, in the first clock cycle we will input a0 in the second a1 and continue until a31 is
reached

This example:

8393638f8410333522e0a9d9ff0746878c3b209d55274c7c97d11b815e4ed8305363b4c27f
20525c99fe3605485cc4c595ab0f3dc416f16b94cce4662025490

Will follow as, 5490 6202 ce46 ….

The output S will follow the same format

3.2 Calculating constants:

The constants n_c and r_c are used to accelerate the exponentiation and depends only of the
module m, this mean that if you intend to use the core with a few already known set of keys you can

5

High Performance RSA 512 bit IPCore

pre-calculate this constants with the “constant_gen.c” code included in the project.

Given a modulus m with 32 16-bit length words (this is 512 bit). We can calculate the
Montgomery constant r as 216∗321

-n_c can be calculated as follows, nc=−m−1mod r , this is the modular inverse of -m module r,

please note that you only need the least significant 16-bit!!

-r_c is r2modm which will result in a maximum of 512 bit number.

Should you want to use our code to generate this constants, you have to edit the .c file and
replace the
mpz_init_set_str(m,"8de7066f67be16fcacd05d319b6729cd85fe698c07cec504776146
eb7a041d9e3cacbf0fcd86441981c0083eed1f8f1b18393f0b186e47ce1b7b4981417b491"
,16);

With your own m value and compile it with “gcc constant_gen.c -lgmp” maybe you will have to install
the gnu multiprecission library available at http://gmplib.org/

4. Required Memory Cores:

4.1 Mem_b:

A Single port Ram Core must be generated with name Mem_b

component Mem_b

port (

clka: IN std_logic;

wea: IN std_logic_VECTOR(0 downto 0);

addra: IN std_logic_VECTOR(5 downto 0);

dina: IN std_logic_VECTOR(15 downto 0);

douta: OUT std_logic_VECTOR(15 downto 0));

end component;

With length parameters as follows:

6

http://gmplib.org/

High Performance RSA 512 bit IPCore

4.2 res_out_fifo:

component res_out_fifo

port (

clk: IN std_logic;

rst: IN std_logic;

din: IN std_logic_VECTOR(31 downto 0);

wr_en: IN std_logic;

rd_en: IN std_logic;

dout: OUT std_logic_VECTOR(31 downto 0);

full: OUT std_logic;

empty: OUT std_logic);

end component;

7

High Performance RSA 512 bit IPCore

4.3 Fifo_512_bram:

component fifo_512_bram

port (

clk: IN std_logic;

rst: IN std_logic;

din: IN std_logic_VECTOR(15 downto 0);

wr_en: IN std_logic;

rd_en: IN std_logic;

dout: OUT std_logic_VECTOR(15 downto 0);

full: OUT std_logic;

empty: OUT std_logic);

8

High Performance RSA 512 bit IPCore

 END component;

4.4 Fifo_256_feedback:

component fifo_256_feedback

port (

clk: IN std_logic;

rst: IN std_logic;

din: IN std_logic_VECTOR(48 downto 0);

wr_en: IN std_logic;

rd_en: IN std_logic;

dout: OUT std_logic_VECTOR(48 downto 0);

full: OUT std_logic;

empty: OUT std_logic);

9

High Performance RSA 512 bit IPCore

 END component;

10

	1. Introduction:
	2. Core Interface:
	3. On constants and input format:
	3.1 Data format:
	3.2 Calculating constants:

	4. Required Memory Cores:
	4.1 Mem_b:
	4.2 res_out_fifo:
	4.3 Fifo_512_bram:
	4.4 Fifo_256_feedback:

